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1. Introduction

Development of a fishery stock assessment often involves fitting
alternative models and using what is thought to be the best among
them to provide management advice (National Research Council
[NRC] 1998). The “best” model is often selected by ad hoc crite-
ria with unknown performance characteristics. Model selection is
an area of importance because estimated quantities important for
management, such as exploitable biomass, can be extremely sen-
sitive to model structure (Punt and Hilborn, 1997; Patterson, 1999;
McAllister and Kirchner, 2002). Common uncertainties in statis-
tical catch-at-age (SCA) model structure include stock-recruitment
relationships, selectivity functions, and assumptions linking fishery
catch with abundance and effort (Patterson, 1999; McAllister and
Kirchner, 2002). In some cases, results from several models have
been reported to managers, but quantitative estimates of the rela-
tive likelihood a particular model was most “correct” have typically
not been provided (McAllister and Kirchner, 2002).
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e fitting alternative models and selecting among them to provide man-
el specification can lead to unreliable population and mortality estimates,
assessment models so as to obtain reliable estimates are needed. We used
ess whether using deviance information criterion (DIC) model selection
ved accuracy of important management quantities from statistical catch-
DIC with three estimation models (that differed in how they estimated
s of data accuracy and time-varying catchability. DIC usually selected the

, and point estimates from the best model or the model average were rela-
age deviation from the true value was near zero. The distributions of point
m DIC-based model averaging and from the best model (lowest DIC) were
the estimation models were quite similar to the data-generating models.
etric to compare evidence in favor of alternative assessment models. This

luate the performance of DIC in models where the purpose is to predict
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Model selection criteria have been applied to SCA models, but
previous applications have been limited in the types of models that
could be compared. Helu et al. (2000) evaluated performance of
Akaike’s Information Criterion (AIC; Akaike, 1973) and Schwartz’s

Bayesian Information Criterion (BIC; Schwartz, 1978) to assess
model selection in SCA models and found that AIC and BIC both per-
formed well by selecting the candidate model that was the same
as the data-generating model in most of their scenarios. Unfor-
tunately, although AIC or BIC may perform well in some cases,
their implementation is problematic when models differ in their
random effects or hierarchical structures because the number of
parameters in these models is not easy to determine (Burnham and
Anderson, 2002; Spiegelhalter et al., 2002). Therefore, comparing
structurally complex SCA models requires alternative model selec-
tion approaches that can account for random effects and priors on
parameters.

The deviance information criterion (DIC) has been developed, in
a Bayesian context, to select among complex hierarchical models
where the number of effective parameters is not readily appar-
ent (Spiegelhalter et al., 2002). Much like AIC and BIC, DIC selects
among models by trading off goodness of fit and model complexity.
DIC is a generalization of AIC and reduces to AIC in the case of a fixed
effects model with diffuse priors (Spiegelhalter et al., 2002). How-
ever, DIC is particularly applicable to models with random effects
or hierarchical structure because it estimates the effective number

http://www.sciencedirect.com/science/journal/01657836
mailto:wilberg@cbl.umces.edu
dx.doi.org/10.1016/j.fishres.2008.04.010


eries Research 93 (2008) 212–221 213
M.J. Wilberg, J.R. Bence / Fish

of parameters rather than requiring the user to provide this. The
“focus of prediction” of DIC is on the random effects, rather than
the distributional parameters for the random effects, and for some
assessment purposes this may be an advantage, as has been argued
in other fields (Berg et al., 2004).

Although DIC has been applied in many studies (e.g., Barry et
al., 2003; Kizilkaya and Tempelman, 2003), relatively few stud-
ies have evaluated the performance of DIC model selection (e.g.,
Cardoso and Tempelman, 2003; Kizilkaya and Tempelman, 2003,
2005; Berg et al., 2004; Ward, 2008). These studies found that DIC
usually could be used to select the correct model (i.e., the model
that generated the data) from the set of candidate models, and that
the estimated number of effective parameters seemed reasonable
for a given model.

Our objectives were to determine if using DIC, as a model selec-
tion criterion, resulted in choosing an appropriate model structure
and level of complexity. Also, we wanted to evaluate whether using
formal model selection methods provided more accurate point esti-
mates of important fishery management quantities, such as fishing
mortality rate and biomass in the last year. In this context, we rec-
ognize that although fishery stock assessments often have Bayesian
aspects, point estimates from the assessments usually play a cen-
tral role in informing management. To achieve these objectives, we
designed a simulation study and challenged the model selection
criteria with three estimation models and three scenarios of data
accuracy and time-varying catchability.

2. Methods

We used Monte Carlo simulations to evaluate whether using
DIC to select among or average over SCA model variants provided
more accurate estimates of quantities used for management than
an approach of using a single model structure in all cases. Our basic
approach was to (1) generate simulated data sets from each of three
different generating models; (2) apply three different stock assess-
ment estimation models to each simulated data set and calculate
DIC in each case; and (3) Use DIC to select the best model and to cal-
culate results averaged over models (Fig. 1). Thus, each simulated
data set led to four sets of estimates, namely the model average
and those from each of the estimation models, which were then
compared to the true values from the data-generating model. Our
data-generating models differed in their relationship between fish-
ing mortality and observed effort: (1) fishery catchability varying as
white noise, (2) fishery catchability increasing a constant amount

each year, and (3) fishing mortality as unrelated to observed effort.
We chose these data-generating scenarios because the relative per-
formance of different estimation models was likely to change over
this range of conditions (Wilberg and Bence, 2006). Three estima-
tion models were fitted to each of the 300 datasets (100 from each
scenario). These estimation models contained different assump-
tions regarding fishery catchability: (1) catchability was modeled
as white noise, (2) as a random walk, and (3) where catchability was
effectively estimated as a free parameter for each year. While the
number of simulations is small relative to most simulation studies
because of the computationally intensive nature of these methods,
we believe the sample sizes are large enough to show general trends
in performance.

All models contained 15 years of data and eight age classes
with the last age class representing all fish that age and older.
Data-generating models were based on commercial fisheries for
lake whitefish (Coregonus clupeaformis) in the upper Great Lakes,
although nothing is unusual about the life history of lake whitefish
that would suggest our results would not be broadly applicable.
Symbols and equations defining the data-generating models and
estimation models are presented in Tables 1 and 2. Equations are
Fig. 1. Flow chart of simulation study to evaluate performance of deviance
information criterion (DIC) in statistical catch-at-age stock assessments for one data-
generating model. Three data-generating models were used in the study (see text for
details), and the procedure was repeated 100 times for each data-generating model.

referred to in the text as Eq. Tx.y, where x is the table number
and y is the equation number within Table x. To simplify pre-
sentation, equivalent quantities and parameters in estimation and
data-generating models are not differentiated except when they
both appear in the same equation, in which case estimated quanti-
ties are denoted with a caret above the symbol (Table 3).

2.1. Data-generating model

The data-generating model described the population dynamics
and created data sets of total fishery catch, the age composition of
the fishery catch, total survey catch per unit effort (CPUE), the age

composition of the survey, and fishery effort. To model population
dynamics, we used an age-structured model that followed cohorts
over time. Recruitment (abundance-at-age 1) was generated from a
lognormal distribution with a coefficient of variation (CV) of 100%.
Numbers-at-age in the first year were calculated assuming a sta-
ble age distribution with lognormal errors, where recruitment and
mortality rates prior to the first year of the simulation were on aver-
age the same as in the first year Eq. (T2.1). Cohorts were tracked
over time by applying a simple exponential mortality model Eq.
(T2.2a); the last age class was treated as representing all fish age 8
and older Eq. (T2.2b). Biomass each year was the sum over ages of
the product of age-specific abundance and mean mass-at-age Eq.
(T2.3).

We used a separable model to generate fishing mortality rates
(i.e., fishing mortality was the product of an age effect and a year
effect). The total mortality rates were determined by the natural
mortality rate and age-specific fishing mortality rates Eq. (T2.4). M
was held constant across ages and years at 0.25. The instantaneous
fishing mortality rate was a function of catchability, fishing effort,
and age-specific selectivity Eq. (T2.5). We allowed fishing mortal-
ity to change over time by allowing fishery effort to change and
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Table 1
Symbols and descriptions of variables for data-generating and estimation models

Symbol Description Value (if needed in the
data-generating model)

R̄ Average recruitment 1,000,000
Ny,a Abundance by age and year
By Biomass
Zy,a Total instantaneous mortality

rate by age and year
Fy,a Instantaneous fishing mortality

rate by age and year
M Instantaneous natural

mortality rate
0.25

sa,f Fishery age-specific selectivity See Fig. 2
sa,s Survey age-specific selectivity See Fig. 2
Ey Fishery effort See Fig. 2
qy,f Fishery catchability
Ẽy Observed fishery effort
qs Survey catchability 0.0001
q̄f Mean fishery catchability 0.05
Cy,a Expected fishery catch-at-age
Iy,a Expected survey catch-at-age
C̃y Observed total fishery catch
Ĩy Observed total survey catch
uy,a,f Proportion of catch-at-age in

fishery
uy,a,s Proportion of catch-at-age in

survey
wa Mean mass-at-age 0.16, 0.45, 0.82, 1.2, 1.55, 1.86,

2.11, 2.3
ıy Deviations for white noise

catchability

Table 2
Data-generating and estimation model equations

Population model equations Application

N1,a = R̄e

−

a−1∑

a=1

Z1,a+�a

; �a ∼ N
(

0, �2
�

)
(T2.1) Generation

Ny+1,a+1 = Ny,ae−Zy,a (T2.2a) Both
Ny+1,8 = Ny,7e−Zy,7 + Ny,8e−Zy,8 (T2.2b) Both

By =
∑

a

Ny,awa (T2.3) Both

Zy,a = M + Fy,a (T2.4) Both
Fy,a = qyEysa (T2.5) Both

Catchability model equations
εy Deviations for linear increase
catchability

ωy Deviations for random walk
catchability

a, b Parameters for linear increase
in catchability

0.032, 0.00225

fy Fishing intensity by year
�� Standard deviation for loge

recruitment variation
1.0

�� Standard deviation for loge

fishery measurement error
0.1

�� Standard deviation for loge of
survey measurement error

0.2–0.8

�ı Standard deviation for loge

catchability deviations for
white noise

0.2

�ε Standard deviation for loge

catchability deviations for
linear increase

0.05

�ω Standard deviation for loge

random walk catchability
0.2
deviations

by incorporating two processes of time-varying catchability (see
below).

The overall level of fishing mortality varied among simulations.
This was accomplished by multiplying the baseline effort (Fig. 2A)
by a Uniform(1,2) number selected for each simulation. The base-
line effort series was designed to produce an average level of F for
fully selected ages approximately equal to M. Thus, this procedure
led to F for fully selected ages varying among simulations between
M and 2M. For the white noise catchability and linearly increas-
ing catchability scenarios observed effort equaled true effort. For
the scenario with uninformative effort, the observed effort series
was drawn as uniform random numbers between the minimum
true effort (effort in year 1) and the maximum true effort (effort in
year 8). The selectivity pattern for the fishery was dome shaped to
simulate a gill net fishery (Fig. 2B).

We included two models for time-varying catchability, which
caused SCA models to have variable performance (Wilberg and
White noise Both

logeqy,f = logeq̄f + ıy; ıy ∼ N
(

0, �2
ı

)
(T2.6)

Linear increase Generation

qy,f = a + b(y) + εy; εy ∼ N
(

0, �2
ε

)
(T2.7)

Random walk Estimation

logeqy+1,f = logeqy,f + ωy; ωy ∼ N
(

0, �2
ω

)
(T2.8)

Freely estimate fy (no catchability) Estimation
Fy,a = fysa,f (T2.9)

Observation model equations

Cy,a = Fy,a

Zy,a
(1 − e−Zy,a )Ny,a (T2.10) Both

C̃y = e�y

∑

a

Cy,a; �y ∼ N(0, �2) (T2.11) Both

Iy,a = qssaNy,a (T2.12) Both

Ĩy = e�y

∑

a

Iy,a; �y ∼ N(0, �2) (T2.13) Both

The application column indicates whether the equation was used in the data-
generating model (Generation), the estimation model (Estimation), or both.

Bence, 2006). The loge of catchability was modeled as white noise to
simulate a fishery where catchability varied from year to year about
a constant mean Eq. (T2.6), perhaps due to environmental effects. In
the second scenario, catchability increased linearly over time with
a small amount of white noise error Eq. (T2.7), which could repre-
sent learning by fishers or increases in gear efficiency. Both models
were parameterized to have the same expected catchability (over
the time series) and similar variances of logeqf. We achieved this
by simulating data sets and adjusting the catchability parameters
until the mean and variance of catchability were the same as in

the white noise case. We used a value of 0.2 for the standard devi-
ation of the loge of catchability. This value is similar to estimates
of the CV of catchability for commercial fisheries in New Zealand
(Francis et al., 2003), but was less than median values of the CV
of fishery CPUE estimated by Harley et al. (2001) for International
Council for the Exploration of the Sea fisheries of 0.4–0.8. Note
that the CV of fishery CPUE, as estimated by Harley et al. (2001),
is an upper bound on the CV of catchability for those fisheries
because it also reflects measurement error and variation in survey
catchability.

Fishery catch was calculated with the Baranov catch equation
(Eq. (T2.10); Quinn and Deriso, 1999). We multiplied total catch
by a lognormal measurement error to calculate observed fishery
catch Eq. (T2.11); the measurement error CV for fishery catch was
about 0.1. Observed age compositions for the fishery catch were
generated by drawing a random sample from a multinomial distri-
bution of size 200 with proportions equal to the true proportions
of catch-at-age in the fishery. We used this effective sample size
because it indicates an informative age compositions within the
range often achieved in real fisheries data (e.g., Crone and Sampson,
1998). Survey CPUE-at-age was calculated as the product of survey
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Table 3

Objective function equations for statistical catch-at-age models

L =
∑

i

�i (T3.1) Objective function

�1 = 1

2�2
�

∑

y

(loge(C̃y) − loge(Ĉy))
2

(T3.2) Fishery catch

�2 = 1

2�2
�

∑

y

(loge(Ĩy) − loge(Îy))
2

(T3.3) Survey catch-per-effort

�3 = −nf

∑

y

∑

a

uy,a,floge(ûy,a,f) (T3.4) Proportion at age in the
fishery catch

�4 = −ns

∑∑
uy,a,sloge(ûy,a,s) (T3.5) Proportion at age in the

survey catch

y a

�5 = 1

2�2
q

∑

y

(ı̂y)
2

(T3.6) White noise
catchability

�5 = 1

2�2
q

∑

y

(ω̂y)
2

(T3.7) Random walk
catchability

catchability, abundance, and survey selectivity (Fig. 2B; Eq. (T2.12)),
and observed survey CPUE was the product of total survey CPUE and
a lognormal measurement error Eq. (T2.13).

As was the case for average fishing mortality, survey quality var-
ied randomly among simulated datasets. This was accomplished by
selecting the measurement error CV for each simulation from a Uni-
form(0.2,0.8) distribution. These levels of survey CV were selected
because they provided contrast in performance of several estima-
tion models (Wilberg and Bence, 2006). Catchability of the survey
was constant over time. Observed survey age compositions were
generated by drawing a random sample from a multinomial distri-
bution of size 150 with proportions equal to the true proportions

Fig. 2. Fishing effort (panel A) and selectivity patterns (panel B) for the fishery
(dashed line) and survey (solid line) for data-generating models.
esearch 93 (2008) 212–221 215

of CPUE at age calculated from Eq. (T2.12). We chose this effective
sample size because it still reflects an informative age-composition,
but also that survey age-composition data will often be based on
fewer sampled trips than such data from fisheries, and this can
be an important determinant of effective sample size (Crone and
Sampson, 1998).

2.2. Estimation model

The estimation models were largely the same as the simula-
tion models except for how catchability was estimated and how
numbers-at-age in the first year and recruitments were handled.
Common parameters among models included N1,1 . . . N15,1 (Recruit-
ment), N1,2 . . . N1,8 (numbers-at-age in the first year), and s1,f
. . . s7,f (fishery selectivity), s1,s . . . s7,s (survey selectivity) and qs

(survey catchability). All models had 52 unique estimated parame-
ters. Parameterization of the models to reduce correlations among
parameters is described in Appendix A. Numbers-at-age in the
first year and recruitment for each year were estimated as param-
eters during the model fitting process. After the first year and
age, abundance-at-age followed a standard exponential mortality
model with the last age representing all fish that age and older Eqs.
(T2.2a) and (T2.2b).

The total mortality rate (Zy,a) was the sum of M and Fy,a Eq.
(T2.4); M was assumed known at 0.25 (the true value from the
simulation models). Fishing mortality followed a separable model
for all of our estimation models (Fournier and Archibald, 1982;
Deriso et al., 1985; Methot, 1990). Fishery and survey selectivities
were estimated as individual parameters by constraining the log
of the age-specific selectivities to sum to zero. This method was
used to reduce correlations among selectivity parameters. Estima-
tion models contained three methods of estimating catchability:
white noise, random walk, and no catchability (directly estimating
fishing mortality). The first estimation model allowed loge fishery
catchability to vary with white noise about a constant mean Eq.
(T2.6). The second estimation model allowed loge fishery catcha-
bility to vary according to a random walk Eq. (T2.8). In our third
estimation model, we estimated the fishing mortality rate for fully
selected age classes as a parameter, and then applied the fishery
selectivity to calculate age-specific fishing mortality rates Eq. (T2.9).
This method does not use fishery effort as a data source. The esti-
mation models also predicted proportions of fishery and survey
catch-at-age.
2.3. Model fitting and convergence

We estimated model parameter values using a Bayesian
approach as implemented in AD Model Builder version 6.0.2 (Otter
Research Ltd., 2000). The objective function was the sum of the
likelihood components and priors. Each component was the nega-
tive of the log likelihood for a single data source or an informative
prior related to time-varying catchability Eq. (T3.1). Our estimation
models assumed lognormal distributions of errors for total catch
for the fishery Eq. (T3.2) and survey CPUE Eq. (T3.3) and multino-
mial distributions for age compositions of the fishery Eq. (T3.4) and
the survey (Eq. (T3.5); Fournier and Archibald, 1982).

For estimation models that used fishery effort as a data source,
fishing mortality was an explicit function of effort and catch was
linked to abundance and fishery effort by estimating catchabil-
ity coefficients. We assumed lognormal deviations for catchability
in the white noise Eq. (T3.6), and random walk Eq. (T3.7) esti-
mation models. This component in the objective function was a
prior and penalizes large deviations from mean catchability (for the
white noise model) or large year-to-year deviations (in the random
walk model). We placed uninformative uniform priors on common
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parameters among models and these priors were the same in each
model.

Determining weights for different data sources is a challeng-
ing issue in SCA and other stock assessment models (Quinn and
Deriso, 1999) and is usually an iterative process where different
sets of weights are evaluated. We weighted data sources by the
inverse of their variances for lognormal likelihood components and
priors and by their effective sample sizes for multinomial likeli-
hood components. Effective sample sizes and CVs of the fishery
and survey catch and age compositions were set to their true val-
ues from the generating models. The standard deviation for the
white noise and random walk catchability deviations (on the loge

scale) was assumed known at 0.2, which was approximately equal
to the expected standard deviation in the data-generating models.
This approach implicitly assumes that some process is available to
the analyst to appropriately assess the information content of the
different data sources.

The AD Model Builder implementation of Markov Chain Monte
Carlo (MCMC) includes first obtaining the parameter values that
maximize the posterior probability density and the associated
asymptotic variance–covariance matrix, then using these param-
eter estimates as starting values for the MCMC chain. AD Model
Builder uses a Metropolis–Hastings algorithm, which samples
from a scaled multivariate normal distribution with variances and
covariances proportional to the asymptotic variance–covariance
matrix. We ran the MCMC chain for each model for 5 000 000 steps
and saved values from every 100th step. In some cases, the mod-
els did not converge to a stable mixing distribution for at least
1 500 000 steps. Therefore, we used a burn-in period of 2 000 000
steps, which reduces the effect of starting values on the MCMC
estimates (Gelman et al., 2004).

We used visual inspection to evaluate convergence of about 10%
of the models fitted. From this subset, models that did not appear to
have converged, as indicated by large differences in the means and
variances of the posterior distribution among subsections of the
MCMC chain, had low effective sample sizes of estimated biomass
and fishing mortality in the last year (<250). Effective sample size
was calculated according to the method of Thiebauz and Zwiers
(1984), where effective sample size is a function of the number of
saved MCMC steps minus the burn-in and the autocorrelation of
values of the MCMC chain. Therefore, we considered results of a
model adequate for use in the study if the effective sample size of
estimated biomass in the last year was greater than 250. We used
the effective sample size for biomass in the last year as our indicator

for model adequacy because it combines information on many of
the estimated parameters and often had the lowest effective sample
size among parameters and other estimated quantities such as F or
the value of the negative log likelihood.

We only evaluated performance of models for data sets where
all the models passed our effective sample size criterion in order
to avoid potential biases that could arise by some models con-
sistently failing our criterion for difficult data sets and others
simply producing poor estimates. Also, comparisons between
model selection and model averaging may not be comparable if
the number of models used for the average changes among data
sets.

2.4. Model selection

DIC, like other information-theoretic model selection crite-
ria, trades off a measure of model fit (average deviance) and a
measure of model complexity (effective number of parameters;
Spiegelhalter et al., 2002).

DIC = D̄ + pD (1)
esearch 93 (2008) 212–221

The average deviance, D̄, for model j is an estimate of model ade-
quacy and is calculated as

D̄ = 1
C

C∑

c=1

− 2 logep(data|	c) (2)

where C is the number of MCMC steps saved minus the burn-in,
and logep(data|	c) is the natural logarithm of the likelihood func-
tion (Spiegelhalter et al., 2002). Like with AIC and BIC, smaller DIC
values indicate better models. The effective number of parameters
is the difference between the average deviance and the deviance
evaluated at the posterior mean parameter estimates,

pD = D̄ − D(	̄). (3)

The model with the lowest DIC was considered the best model
when we chose among estimation models applied to each simu-
lated data set.

2.5. Model probabilities and model averaging

In many cases, model averaging provides superior predictive
performance over using a single model selected by a model
selection criterion because estimates from a single model ignore
uncertainty in model selection (i.e., model selection uncertainty;
Hoeting et al., 1999; Burnham and Anderson, 2002, 2004 and refer-
ences therein). Bayesian theory would suggest averaging models
based upon Bayes factors, but there are conceptual and practi-
cal difficulties, including difficulties in obtaining reliable estimates
of Bayes factors from MCMC samples (Kass and Raftery, 1995)
and concerns that Bayes factors may not consider the appropri-
ate focus of estimation for many problems (Berg et al., 2004; van
der Linde, 2005). Therefore, we calculated model averaged esti-
mates of biomass and fishing mortality in the last year, weighting
estimates from different models by weights derived from DIC dif-
ferences (by adapting the method of Burnham and Anderson (2002)
for AIC). These DIC-based weights were estimated by rescaled DIC
differences among models,

P(Ma) = e−(
a/2)
∑

b

e−(
b/2)
, (4)
where P(Ma) is the weight (“probability”) for model a and 
 is the
DIC difference between model a and the best model (for the best
model 
 equals zero). This procedure rescales the DIC differences
from the log scale to the normal scale. After Burnham and Anderson
(2002) for AIC, we view these weights as probabilities that a given
model would be best, among the candidate models, at predicting
new data generated from the same process that produced the orig-
inal data. However, this method of model averaging is ad hoc and
does not produce equivalent posterior model probabilities as Bayes
factors (Spiegelhalter et al., 2002). In addition to using these model
probabilities in model averaging, we also present frequency dis-
tributions of them to provide insight into how definitive the DIC
evidence was. The relative values of these model probabilities is
directly related to differences in DIC values, with DIC differences of
2.0 and 4.0 corresponding to the model with the lower DIC being
2.7 and 8.7 times as probable as the alternative model, respec-
tively. Burnham and Anderson (2002) proposed that models with
AIC within 2.0 of the best model have substantial support, and mod-
els with AIC differences greater than 4.0 from the best model have
considerably less support. Spiegelhalter et al. (2002) suggest that
such rules of thumb work reasonably well for DIC.
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2.6. Evaluation of estimation model performance

We determined how often the correct structural model was
selected, even though there was not a truly correct model in the sce-
nario with a linear increase in catchability or in the uninformative
effort scenario. In the white noise case, the white noise estima-
tion model was correct. The random walk model was considered
the correct model in the linear increase scenario because it tended
to perform better than other models in this scenario (Wilberg and
Bence, 2006) and because it is designed to allow for gradual changes
in catchability over time. In the case with uninformative effort data,
the model that ignored fishery effort data was considered the cor-
rect model.

In stock assessments, estimated quantities in the last year are
often most important for forecasting and management, and point
estimates are almost universally used in managing fisheries. There-
fore, we evaluated selection method performance by calculating
the relative error (RE) of estimated biomass and average fishing
mortality (for ages 4–8) in the last year.

RE = estimated − true
true

× 100 (5)

In Bayesian analyses, the result is a posterior distribution, and
the mean of the posterior distribution is commonly used as a point
estimate of the quantity of interest. We evaluated performance of
models using the mean and the median of the posterior distribu-
tion to determine which provided a more accurate point estimate.
We evaluated performance of DIC model selection, model averag-
ing, and only using a single model with root mean square relative
error (RMSE), which summarizes the variance and bias of model
estimates. Although bias is essentially a frequentist concept, we
believe it is a useful quantity to consider given the wide usage of
point estimates in fisheries management.

3. Results

All three estimation models achieved our minimum effective
sample size for 82% of the white noise data sets, 89% of the linear
increase data sets, and 80% of the uninformative effort data sets. All
three models failed our sample size diagnostic in 5% of cases, two
models failed in 4%, and one model failed in 7% of cases. Most of
the MCMC chains appeared to have converged to their stable mix-
ing distribution within 10 000 steps. However, in several cases, the
MCMC routine required nearly 2 000 000 steps as a burn-in period

to reach a stable mixing distribution, and some chains did not seem
to reach a stable mixing distribution within 5 000 000 steps.

Estimates of the effective number of parameters, pD, were typi-
cally less than the actual number of estimated parameters, 52. The
effective number of parameters for the estimation model with ran-
dom walk catchability was the lowest with a mean of 47.1 and a
range of 45.3–47.9. The estimation model with white noise catch-
ability had the second fewest effective parameters with a mean of
48.4 (range 46.4–49.2). The estimation model that freely estimated
fishing mortality for each year had the most effective parameters
with a mean of 51.6 (range 48.6–52.4), which was quite close to
the true number of estimated parameters. Some model fits had
unrealistically low (e.g., 20) or negative estimates of the number of
effective parameters. All of these models had extremely low effec-
tive sample sizes for several quantities (usually less than 250), and
unrealistic estimates of the number of effective parameters seemed
to indicate poor estimation performance. Only one model fit had an
unrealistically low effective number of parameters and an effective
sample size for biomass greater than 250; we excluded this data set
from further consideration because of an unbelievable estimate of
effective number of parameters.
Fig. 3. Root mean square error of point estimates of biomass (A) and fishing mor-
tality (B) in the last year of the simulation. Solid bars represent performance of the
median of the posterior distribution as a point estimate and open bars represent
the mean. NQ (no catchability), RW (random walk), and WN (white noise) represent
estimation models and data-generating models are 1 (white noise catchability), 2
(linear increase in catchability), and 3 (uninformative effort).

The median of the posterior distribution usually provided more
accurate point estimates of biomass and fishing mortality rate in the
last year than the mean (Fig. 3). On average, the RMSE of the median
was 4.4% lower than the mean for biomass and 13.6% lower for fish-
ing mortality rate. The large difference in performance between the
mean and median for the white noise model in the uninformative
effort scenario was caused by a single bad estimate. If this case was
removed, the median still had a slightly lower RMSE for fishing
mortality (1.1% difference) than the mean. All subsequent results
are based on medians as point estimates.

DIC usually selected the correct estimation model in each
scenario. For data sets that were generated with white noise catch-
ability, the white noise estimation model was selected 72% of the
time. In the scenario with a linear increase in catchability, the

random walk model was selected 99% of the time. In the uninfor-
mative effort scenario, the estimation model that ignored fishery
effort was selected 88% of the time. However, model probabilities,
based on DIC differences provided equivocal evidence in favor of
the best model (P(Ma) < 0.9) in 100% of the white noise and about
75% of the linear increase in catchability scenarios (Fig. 4). In con-
trast, the estimation model with no catchability was more often
strongly supported (P(Ma) > 0.9 55% of the time) when effort data
were uninformative (Fig. 4).

Using DIC and model averaging tended to provide relatively
unbiased estimates (Fig. 5) and had similar RMSEs to the cor-
rect model (Fig. 6). Differences among model RMSEs varied
among data-generating scenarios. The largest difference among
model performance occurred in the white noise data-generating
scenario, and the least difference among estimation model per-
formance occurred in the scenario with uninformative effort.
Somewhat surprisingly, when effort was uninformative, the esti-
mation model that best represented the data generation process
did not perform best in terms of RMSE. This appears to be a case
where estimating additional parameters does not provide bet-
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sent a
f fitte
Fig. 4. Histograms of the model probabilities (see Eq. (4) for definition). Rows repre
probability of near 1.0 indicates strong evidence that a model is the best in the set o

ter estimates, even though this leads to a more correct model
specification.

4. Discussion
This study indicates that DIC can be used to choose models that
are structurally appropriate given the data-generating model and
provided performance characteristics similar to knowing the best
model in advance. Using DIC for model selection and model aver-
aging produced relatively unbiased and accurate point estimates
of biomass and fishing mortality in the last year. While our results
show promise for use of DIC in the stock assessment arena, we
strongly suspect that prior information on the nature of the correct
(or a robust) model often will provide large benefits. For example,
Prager (2002) evaluated the procedure of selecting between logistic
and generalized production models based on likelihood ratio tests
when the true value of shape parameter used in the generating
model was close to that for a logistic model. With realistic lev-
els of observation error the model selection procedure performed
poorly relative to just using the logistic model, because the logis-
tic model was rejected only in cases where the estimated shape
parameter of the generalized model was far from logistic. We agree
with Prager (2002), that information-theoretic criteria for model
selection would likely perform in a similar fashion. Prager (2002)
discussed an alternative to assuming the logistic model, of using the
generalized model with an informative prior for the shape parame-
lternative data-generating scenarios, and columns represent estimation models. A
d models.

ter. Within the context of Bayesian analysis, another way to address
this problem would be to formally assign prior model probabilities
to the alternative models, and use Bayesian model averaging based
on Bayes factors (e.g., McAllister and Kirchner, 2002). In contrast
with use of Bayes factors, the model averaging procedure we used

implies lower prior probability for more complex models because of
the penalty imposed by the effective number of parameters, sim-
ilar to a Bayesian interpretation of AIC (Burnham and Anderson,
2004).

In this study we made a number of simplifying assumptions,
which included assuming M, variances, and effective sample sizes
were known, constant, and correctly specified. These assumptions
were pragmatic choices and are common to many simulation stud-
ies evaluating assessment methods (e.g., Yin and Sampson, 2004).
In real assessments these quantities are estimates, and their true
values are unlikely to be truly constant. Ideally, uncertainty in such
quantities and the possibility that values vary would be acknowl-
edged and accounted for in the real assessment methods and range
of candidate models. The effect of these simplifying assumptions for
our simulation results will be to generally overstate the accuracy
of assessment results. While we have no specific reasons to sus-
pect that these simplifying assumptions distorted our conclusions
about the utility of DIC as a model selection method, we cannot rule
out this possibility. We emphasize that DIC would not necessarily
be useful in a real assessment situation if all the candidate models
had severe violations of their assumptions.
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Fig. 5. Box plots of relative error of point estimates (medians) of biomass and aver-
age fishing mortality in the last year. The middle line indicates the median, the box
indicates the interquartile range, and the whiskers indicate the range of observed
values between the 25th or 75th percentile and 1.5 times the interquartile range;
stars and circles indicate points outside 1.5 and 3.0 times the interquartile range,
respectively. Estimation methods are indicated by DIC for deviance information cri-
terion, MA for model average, NQ for the estimation model that did not estimate
catchability, RW for the estimation model with random walk catchability, and WN
for the estimation model with white noise catchability. The top row of panels dis-
plays performance under the white noise catchability data-generating model, the
middle row indicates the linear increase scenario, and the bottom row indicates the
scenario with uninformative effort.

Outliers can have a large influence on parameter estimates in
stock assessments (Chen et al., 2000) and on the apparent evidence

in favor of alternative models. Prager (2002) found that fitting of
swordfish data with a generalized production model by nonlinear
least squares suggested a shape parameter divergent from a logistic
model; after outliers were removed, the 80% CI for the shape param-
eter overlapped a logistic shape. Furthermore, in this case the two
models suggested qualitatively different stock status and manage-
ment parameters. We suspect that the presence of non-informative
outliers could generally pose a problem for model selection proce-
dures. Removing different data points for use by different models,
after initial fitting, as done by Prager (2002) is not compatible with
model selection by DIC or related information criteria, although DIC
could be used if one adopted a procedure of removing the same
data points from use in all models. Alternatively, outliers could be
treated using robust estimation methods that presume that data
distributions are mixtures of informing and contaminant distribu-
tions (Chen and Fournier, 1999). However, theoretical justifications
and most simulation validations of DIC, like ours, have assumed
exponential family distributions. Performance of DIC when faced
with alternatives, such as mixture distributions, has shown mixed
results and is a continuing focus of research (van der Linde, 2005;
Celeux et al., 2006).
Fig. 6. Root mean square error of point estimates (medians) of biomass and fishing
mortality in the last year of the simulation. Estimation methods are indicated by
DIC for deviance information criterion, MA for model average, NQ for the estimation
model that did not estimate catchability, RW for the estimation model with random
walk catchability, and WN for the estimation model with white noise catchability.
The top row of panels display performance under the white noise catchability data-
generating model, the middle row indicates the linear increase scenario, and the
bottom row indicates the scenario with uninformative effort.

For the conditions of our study, although DIC-based model aver-
aging did not appear to provide more accurate point estimates than
just selecting the best model, there was also no obvious penalty
associated with the averaging. Model averaging did not produce

less biased estimates as a rule in our study, but differences in per-
formance between the best model and the model average were
relatively small. In general, Burnham and Anderson (2002) found
that model averaged estimates (based on AIC) were less biased than
simply using estimates from the best model after model selec-
tion. A lack of benefits of model averaging in our study may be
because the best models were the same as or quite similar to the
data-generating models. Also, when evidence is strongly in favor
of a single model, there is little difference between estimates from
the best model and model averaged estimates, as in our scenario
with uninformative effort. However, in real world applications it
is unlikely that the estimation models will be as similar to the
data-generating reality as in this study, although differences among
model estimates can still be small because of relatively uninforma-
tive data (e.g., Wade et al., 2007). Model average estimates might
sometimes provide a large increase in performance for point esti-
mates in assessments, unlike what we saw in this study, especially
in cases where alternative models suggest different conclusions
about stock dynamics (e.g., McAllister and Kirchner, 2002). Often
the primary benefit of model averaging has been to more accu-
rately represent uncertainty in model results (Hoeting et al., 1999;
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Burnham and Anderson, 2004), an aspect of model performance
we did not evaluate. Model averaging based on DIC remains intu-
itively appealing, although its ad hoc nature argues for much more
research on the performance of the method (Spiegelhalter et al.,
2002).

The choice of a model selection criterion should depend on
the objectives of the study and the “focus of prediction” (Celeux
et al., 2006). DIC is a general model selection criterion, and was
developed to perform well in prediction of future data sets gener-
ated by the same mechanism (Spiegelhalter et al., 2002; van der
Linde, 2005). For many stock assessment applications, predictions
of the most recent years may be of more importance for manage-
ment than earlier years, but DIC, like AIC, BIC, and Bayes factors,
treats each year’s data the same. For applications where the most
recent year’s estimates are of primary importance, model selection
methods that weight these most recent years may be preferable
to other standard methods, but would need to be developed for
the specific objective. For this reason, we chose to evaluate perfor-
mance of DIC by comparing the accuracy of estimates in the last
year. This study is one of the first to evaluate the performance of
DIC in models where the purpose is to predict such unobserved
quantities

Results from multiple stock assessment models are usually pre-
sented to decision makers as a form of sensitivity analysis (Punt and
Hilborn, 1997; Patterson, 1999), and several interest groups may
suggest or present alternative models of stock dynamics (McAllister
and Kirchner, 2002). Yet, decision makers are usually not pro-
vided with quantitative rankings of how much better the best
model is than alternative models. Our results suggest that DIC is
potentially useful to provide quantitative advice for ranking, com-
paring, and integrating results of alternative models. However, DIC
model comparisons are limited in the types of models that can
be compared because the models must use the same dependent
variables (Spiegelhalter et al., 2002). These data would include
catch and CPUE time series and age compositions of the time
series.

Certainly DIC should not be the only tool used for model selec-
tion. Factors such as model plausibility, sensitivity, examination
of residual patterns, and retrospective bias should also be con-
sidered when choosing among models (NRC, 1998). However, DIC
provides an objective metric to compare among alternative assess-
ment models, especially in those that differ in their hierarchical
structure or random effects, and does show promise for helping
select among stock assessment models even when models are quite

similar. Additionally, because DIC was able to select the correct
structure of the underlying model, it could be a useful tool for esti-
mating weights for alternative models of system dynamics for use
in management strategy evaluation (Smith et al., 1999; Sainsbury
et al., 2000; Rademeyer et al., 2007).
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Appendix A

The MCMC algorithm was very sensitive to parameter correla-
tions greater than about 0.8. Under these conditions, the MCMC
algorithm mixed very poorly and produced very “sticky” MCMC
chains (i.e., chains with high autocorrelation). Therefore, we repa-
rameterized aspects of the models to reduce these correlations. All
parameters described below were estimated on the log scale. Two
groups of parameters were highly correlated within each group:
parameters that determined overall scale of population size, and
selectivity parameters for the fishery and survey. Parameters that
determine the overall scale of the population size included mean
recruitment, mean abundance-at-age in year 1, fishery catchabil-
ity (or mean F in the model that ignored fishery effort data), and
survey catchability. In order to minimize correlation among these
parameters, we parameterized the model by estimating the loge

of mean recruitment and a deviation from this for each of these
other “scale-setting” parameters. The other parameters that had
high correlations were selectivity at age for the fishery and the
survey. To reduce these correlations, the models were parameter-
ized to estimate deviations from a mean loge selectivity that was
forced to equal zero. This constraint serves to make the selectivity
parameters identifiable and not confounded with the associated
catchability (for fishery or survey), in the same way that the more
usual approach of setting selectivity to 1.0 for a fully selected age
(e.g., Fournier and Archibald, 1982) does.
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